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ABSTRACT
Assessing flood risk is challenging due to complex interactions
among flood susceptibility, hazard, exposure, and vulnerability
parameters. This study presents a novel flood risk assessment
framework by utilizing a hybridized deep neural network (DNN)
and fuzzy analytic hierarchy process (AHP) models. Bangladesh
was selected as a case study region, where limited studies exam-
ined flood risk at a national scale. The results exhibited that hybri-
dized DNN and fuzzy AHP models can produce the most accurate
flood risk map while comparing among 15 different models.
About 20.45% of Bangladesh are at flood risk zones of moderate,
high, and very high severity. The northeastern region, as well as
areas adjacent to the Ganges–Brahmaputra–Meghna rivers, have
high flood damage potential, where a significant number of
people were affected during the 2020 flood event. The risk assess-
ment framework developed in this study would help policymakers
formulate a comprehensive flood risk management system.
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Introduction

Flooding is known to be one of the most common yet devastating natural hazards
(Stefanidis and Stathis 2013; Dewan 2015; Rahmati et al. 2020). Floods caused direct eco-
nomic losses of USD 386 billion worldwide since 2001 (Wang et al. 2011; Rahmati et al.
2020). Economic damages caused by floods negatively impact human wellbeing, promot-
ing long-term poverty in flood-affected regions (Adnan et al. 2020a; Barbour et al. 2022).
An upsurge in population growth, exorbitant poverty, and climate change have increased
flood risk in developing countries, especially in South Asia (Rahman et al. 2021a).
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Locating in an active deltaic region and crisscrossed by many large river channels,
Bangladesh is frequently affected by floods of different magnitudes primarily due to high
discharge in the Ganges, Brahmaputra, and Meghna (GBM) rivers caused by an excessive
amount of rainfall in upstream regions(Chowdhury and Hassan 2017; Leon et al. 2020;
Rahman et al. 2021b). The country is generally affected by four distinct types of floods:
riverine or fluvial, flash or rainwater, urban or pluvial, and coastal floods (Adnan et al.
2019b). Heavy monsoon rainfall in the upstream river catchments leads to recurring river-
ine floods in Bangladesh (Rahman et al. 2021a). Various extreme riverine flood events,
especially those that occurred in 1988, 1998, and 2004, killed many lives and caused
extensive property damages, causing significant losses to the national economy (Dewan
2015). Most recently (in 2020), about a quarter of the country’s lands were inundated by
monsoon flooding, affecting over four million people (Nasa 2020).

Since flooding is the outcome of extremely complex and intricate dynamic processes, it
is nearly impossible to prevent it from occurring (Pappenberger et al. 2006). Hence, flood
risk reduction has become one of the major challenges worldwide (Rahmati et al. 2020).
Reducing the detrimental effects of flooding depends on a quick and accurate assessment
of risk, which helps to formulate risk management plans (Mojaddadi et al. 2017). The
emergence of various remote sensing and the geospatial techniques has enabled research-
ers and practitioners to assess flood risk more accurately (Dewan et al. 2006; Pradhan
2010; Thirumurugan and Krishnaveni 2019; Rahman et al. 2021b). Evaluation of flood
risk includes investigating flood risk-prone zones where the flood potentials are very high
(Mojaddadi et al. 2017). A comprehensive flood risk assessment plays a vital role in the
overall flood risk management system, which requires quantification of flood hazard,
exposure, and vulnerability (Meyer et al. 2009; Pham et al. 2021a, 2021b). Various studies
indicated that an accurate flood susceptibility model (FSM) can be translated into a flood
hazard model by integrating factors such as flood depth, flood duration, and rainfall
(Mojaddadi et al. 2017; Rahman et al. 2019; Pham et al. 2021a, 2021b; Rahman
et al., 2021a).

Several studies conducted flood risk assessments both at the local and national scales
around the world with the aid of remote sensing and GIS techniques, traditional statistical
models, and multi-criteria decision analysis (MCDA) methods (Wang et al. 2011; Rinc�on
et al. 2018; Luu et al. 2019; Akay and Baduna Koçyi�git 2020; Akay 2021; Ekmekcio�glu
et al. 2021). However, the results produced by those methods could be affected by the
nonlinear and dynamic nature of flooding (Tehrany et al. 2015), scarcity of necessary data
especially in developing countries (Darabi et al. 2019), and restricted applicability of the
models at multiple scales (De Moel et al. 2015). The limitations of various statistical flood
models have prompted researchers to apply different machine learning (ML) algorithms
in assessing flood risk (Rahmati et al. 2020). Recent studies applied different standalone
as well as hybridized ML models. For instance, hybridized support vector machine (SVM)
(Mojaddadi et al. 2017; Ma et al. 2019b) including SVM based on the radial basis function
(SVM-RBF) (Ngo et al. 2021; Siam et al. 2021a) and SVM with the convolutional neural
network (CNN) (Wang et al. 2020), standalone and hybridized decision table models
(Pham et al. 2021b), hybridized decision tree (DT) (Chen et al. 2021) and others (Darabi
et al. 2019). Tehrany et al. (2015) examined the efficacy of SVM in flood susceptibility
mapping by comparing the performance of such models with four distinct kernels: linear,
polynomial, RBF, and sigmoid. All these studies reported that hybridized ML models
potentially produce more accurate results compared to standalone models (Rahmati et al.
2020; Siam et al. 2021a, 2021b). Also, to address the uncertainties related to the classical
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MCDA approaches, a few studies exploited the fuzzy MCDA approach (Akay 2021;
Costache et al. 2021; Vilasan and Kapse 2021).

The application of deep learning (DL) algorithms has proved to be very efficient in
quantifying flood probability (Ma et al. 2019a). Recently, several studies have been con-
ducted using various deep neural network (DNN) architectures for FSM, with various
combinations of algorithms. The latest DNN-based flood susceptibility models include the
use of (1) DNN in combination with the manta ray foraging optimization algorithm
(Nguyen et al. 2021), (2) combined the multilayer perceptron (MLP) and autoencoder
models (Ahmadlou et al. 2021), (3) CNN and recurrent neural network (RNN) (Panahi
et al. 2021), (4) standalone and hybridized CNN architectures (Wang et al. 2020).
However, all these studies were limited to flood susceptibility assessment. Consequently,
little is known regarding the applicability of hybridized models in assessing flood risk.
Only a few studies utilized DNN models (Chen et al. 2021) in combination with the
MCDA approach for flood risk modeling (Pham et al. 2021a, 2021b). Still, the use of the
hybridized DNN architectures is underexplored in flood risk studies. Besides, in the con-
text of Bangladesh, only a few studies carried out flood susceptibility assessment at a
national scale (Rahman et al. 2019, 2021a, 2021b; Siam et al. 2021a), while no study has
attempted to quantify country-level flood risk.

In response to the above-discussed research gaps, this study aims to present a flood
risk assessment framework by utilizing a hybridized DNN and fuzzy analytic hierarchy
process (AHP) models. This study hypothesized that the integration of hybridized DNN
model with the fuzzy AHP method can potentially produce more realistic results than the
classical AHP method. Unlike previous studies on risk assessment framework to flood, we
have modeled a hybridized DNN-based flood susceptibility model as a principal operator
in developing a flood hazard map. The framework has been applied in assessing flood risk
at the national scale in Bangladesh.

Figure 1. Flowchart of this study.
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Materials and methods

The study was conducted in five steps. First, various flood conditioning factors were iden-
tified for developing a flood susceptibility model. Second, flood susceptibility models were
developed based on different standalone and hybridized DNN and SVR models, as well as
other conventional ML models (e.g. conditional inference tree, KNN, and MLP). Third,
based on several evaluation metrics, the best-performing method was chosen for mapping
the flood susceptibility. Fourth, flood hazard, exposure, and vulnerability maps were
developed using the fuzzy AHP method, where the best-performing flood susceptibility
map was used to model flood hazards. Finally, a flood risk map was developed by inte-
grating flood hazard, exposure, and vulnerability maps. Figure 1 shows a brief methodo-
logical overview of the present study.

Study area

The present study focused on Bangladesh (Figure 2). Geographically, the country is
located in South Asia, between the latitudes of 20�340 and 26�380 to the north and longi-
tudes of 88�010 and 92�410 to the east (Hasan et al. 2017; Rahman et al. 2019). More than
162.7 million people inhabit the country, with an annual population growth rate of
1.37%, within an area of 1,47,570 km2. Thus, Bangladesh has the highest population dens-
ity in the world, with a density of approximately 1,063 people per km2 (Hasan et al. 2017;
Rahman et al. 2019). The country is characterized by five topographic regions—
Chittagong, Tippera-Comilla, north Bengal, northeastern, and southwestern regions—
comprising 64 districts, eight divisions, and 492 subdistricts (Islam and Sado 2000). It
includes three major river systems: the Ganges, Meghna, and Brahmaputra, with

Figure 2. Map of Bangladesh with sample flood locations.

4 Z. S. SIAM ET AL.



Figure 3. Thematic layers of various indicators for modeling flood risk.
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numerous distributaries and tributaries. The geographical location, flat topography, and
tropical climatic conditions of Bangladesh make it one of the world’s most flood-prone
areas. The yearly average precipitation generally ranges between 2200 and 2500mm.
Annual mean temperature ranges between 25 �C and 35 �C. Almost 80% of the total land-
mass of Bangladesh is fertile alluvial lowlands. The rest of the country slightly elevated
older plains and small hilly regions (Rahman et al. 2019).

Figure 3. Continued.
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Flood inventory mapping

The flood inundation areas of historical flooding events are typically used as a dependent
variable for modeling flood susceptibility (Rahman et al. 2019; Pham et al. 2021a).
Inundation data, of three different periods (July 12–21, July 23–27, and July 29–August
02) in monsoon season of 2020, were collected from the United Nations Institute for
Training and Research (UNITAR). The UNITAR used Sentinel-1 satellite data to detect
inundated areas (Unitar 2020). The obtained inundation vector files were then converted
to raster layers at 30m resolution to ensure agreement with the digital elevation model
(DEM) used in this study. The inundation raster layer was binarized—non-flood and
flood locations were labeled as 0 and 1, respectively (Eq. (1)).

Flood Inventory, y ¼ 1; if flooding
0; if non�flooding

�
(1)

The combined flood inundation map was utilized to produce sample flood and non-
flood points. A total of 2,766 sample points (flood points—1408 and non-flood points—
1358) were created using the stratified random sampling technique. The stratified random
sampling technique divides a population into smaller homogeneous subgroups known as
strata. The strata are constructed depending on the members’ shared characteristics or
attributes. This technique has been widely used in flood modeling due to its ability to
reduce bias in the sample (Adnan et al. 2020a, 2020b). Based on the previous studies
(Pham et al. 2021a, 2021b), the sample points were split into two groups: 70% of the total
sample points (983 flood points, 953 non-flood points) was considered to train the flood
susceptibility model while the other 30% sample (425 flood points, 405 non-flood points)
was employed to test the model. To reduce model overfitting, this study applied a 10-fold
cross-validation technique to further divide the train set (70% sample points) into train
and validation sets.

Flood conditioning factors

An important component of preparing FSMs is to choose appropriate flood conditioning
factors that contribute to the occurrence of flooding in an area (Pham et al. 2021a). There

Table 1. Indicators used for flood susceptibility, hazard, exposure and vulnerability modeling.

No. Factors Spatial resolution Variable type Sources

1 Elevation 30 m Numeric (Jaxa 2015)
2 Slope " Numeric Derived from DEM
3 Aspect " Categorical "
4 Curvature " Categorical "
5 Flow Accumulation " Numeric "
6 SPI " Numeric "
7 TWI " Numeric "
8 Soil Permeability " Categorical (Barc 2014)
9 Soil Texture " Categorical (Barc 2014)
10 LULC 10 m Categorical (Karra et al. 2021)
11 Geology 30 m Categorical (Persits et al. 2001)
12 Distance to River " Numeric (Warpo 2018)
13 Drainage Density " Numeric Derived from DEM
14 Flood Depth " Categorical (Barc 2014)
15 Rainfall 11.1 km Numeric (Huffman et al. 2019)
16 Population Density (Population per Cell) 100 m Numeric (Worldpop 2020)
17 Age (Less than 14 and Greater than 60) 100m Categorical (Bondarenko et al. 2020)
18 Poverty (Wealth Index) 60m–5 km Numeric (Steele et al. 2017)
19 Road Density 30 m (Warpo 2018)
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is no universal method to identify appropriate flood conditioning factors as different stud-
ies used various combinations (Rahman et al. 2019; Wang et al. 2019; Rahmati et al. 2020;
Talukdar et al. 2020; Costache et al. 2020a; Pham et al. 2021a). However, factors should
be identified according to the environmental conditions of the study area (Adnan et al.
2020b). In this study, initially, thirteen flood causative factors were chosen based on the
topographical, hydrological, locational, geological, and anthropogenic characteristics of the
study area. Selected factors include slope, aspect, curvature, elevation, Stream Power
Index (SPI), flow accumulation, Topographic Wetness Index (TWI), soil permeability, soil
texture, land use/land cover (LULC), geology, distance to rivers, and drainage density.
The thematic maps for all thirteen flood causative factors were developed at a spatial reso-
lution of 30m (Figure 3).

Topographical factors considered for flood susceptibility modeling include elevation,
slope, aspect, and curvature. Surface elevation is an important factor accountable for
flooding (Sarkar and Mondal 2020; Bui et al. 2020a; Islam et al. 2021). Generally, eleva-
tion is negatively associated with flooding, as areas with lower elevation tend to be highly
susceptible to flooding (Rahman et al. 2021b). In this study, a raster elevation layer was
prepared using the Advanced Land Observing Satellite (ALOS) Digital Elevation Model
(DEM) at 30m resolution (Jaxa 2015). Other topographical factors like slope, curvature,
and aspect are computed from DEM. Slope determines the runoff velocity after a rainfall
event (Talukdar et al. 2020). Flood potential is higher in areas with a lower slope and vice
versa (Adnan et al. 2020b). Aspect is another important topographical factor that indicates
slope directions (Adnan et al. 2020b). Generally, aspect denotes the magnitude of rainfall
and sunshine that an area would receive, influencing the water balance of an area
(Tehrany et al. 2017). Curvature indicates geomorphological features of an area (Paul
et al. 2019). Surfaces with flat or concave characteristics are usually susceptible to flooding
(Adnan et al. 2020b).

Flow accumulation is an important hydrological factor that impacts the flood suscepti-
bility of an area. The raster layer of flow accumulation was derived from DEM by devel-
oping a continuing network of drainage systems (Planchon and Darboux 2002). Pixel-
wise flow accumulation value denotes accumulated water flowing in the downslope direc-
tion (Adnan et al. 2020b). The flow accumulation layer was used to identify drainage
channels (Adnan et al. 2019a), which was later used to develop a drainage density layer.
Other hydrological factors such as SPI and TWI indicate drainage characteristics of the
study area. SPI typically exhibits the erosive power of flowing water (Talukdar et al.
2020), indicating the rate of sediment that could relocate to natural drainage channels
(Adnan et al. 2020b). On the other hand, TWI denotes the amount of water that is

Table 2. VIF values, indicating multicollinearity of selected factors.

Factors VIF (Iteration 1) VIF (Iteration 2)

Aspect 1.029 1.007
Distance to river 1.162 1.160
Drainage density 1.189 1.182
Elevation 2.496 2.472
Flow accumulation 4.119 –
Geology 1.487 1.481
LULC 1.255 1.254
Curvature 1.251 1.182
Slope 3.673 1.833
Soil permeability 1.997 1.988
Soil texture 2.461 2.459
SPI 6.410 1.284
TWI 7.621 –
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accumulated in every pixel size (Islam et al. 2021). TWI explains the possibility of a wet
surface. An area with higher SPI and TWI is highly likely to be flooded (Bannari et al.
2017). SPI and TWI were computed using Eqs. (2) and (3).

SPI ¼ As � tan b (2)

TWI ¼ ln
As

b

� �
(3)

where As is the fixed catchment region (m2/m) and b is the slope gradient.
This study also used three geological factors: geology, soil permeability, and soil tex-

ture. Soil texture controls infiltration rate as well as surface runoff, hence, it is considered
a significant flood conditioning factor (Rahman et al. 2021b). The raster layer of soil tex-
ture was taken from Bangladesh Agricultural Research Council (BARC) database (Barc
2014). Soil permeability data can explain runoff patterns and drainage processes. It indi-
cates the hydraulic activity of unsaturated soils and is an important factor influencing
streamflow (Singh et al. 2020). The soil permeability data were also obtained from Barc
(2014). This study also considered the geological characteristics of Bangladesh. The geol-
ogy of an area influences the formation and construction of drainage patterns (Islam and
Sado 2000; Bui et al. 2019), leading to the generation and development of floodplains.
Typically, areas with a mostly impenetrable surface geology are highly susceptible to flood
(Islam and Sado 2000). The digital geological data of Bangladesh was taken from the
United States Geological Survey (USGS) (Persits et al. 2001).

LULC is a crucial flood conditioning factor since it directs the initiation as well as
infiltration of the surface runoff and transportation of sediment (Adnan et al. 2020b). It
directly impacts some parameters in the hydrological cycle such as interception and con-
centration (Rahman et al. 2019). Generally, built-up areas are more prone to flooding
compared to the forest and open spaces due to low infiltration rates and high surface run-
off (Talukdar et al. 2020). LULC data of 2020 was collected from the Environmental
Systems Research Institute (Esri), which is developed using Sentinel-2 imagery (Karra
et al. 2021).

Rivers are considered as the main paths of water flow causing flood events (Rahmati
et al. 2020). This study incorporated a layer explaining distance to river as a locational
factor (Mojaddadi et al. 2017). Areas that are close to the river are generally more suscep-
tible (Talukdar et al. 2020; Costache et al. 2020b). The distance to river layer was derived
from a river network database, collected from Water Resources Planning Organization
(WARPO) (Warpo 2018) using the Euclidean distance algorithm. Table 1 shows a sum-
mary of the sources and spatial resolution of flood causative factors.

Flood risk components

Flood hazard
This study considered flood susceptibility (Pham et al. 2021a), flood depth (Pham et al.
2021a), and rainfall (David and Schmalz 2020) to develop a flood hazard map of
Bangladesh (Table 1). Rainfall is a crucial hydrological factor for flood hazard mapping
(Lu et al. 2020). In Bangladesh, both short-term heavy rainfall and long-term low to mod-
erate rainfall are accountable for flooding (Adnan et al. 2019b). Rainfall can cause hydro-
static pressure, promoting a higher water level in the major rivers (Rahman et al. 2019).
Satellite-derived gridded precipitation data of July and August 2020, collected from
Huffman et al. (2019), were used to develop a layer of the average monthly total rainfall.
A thematic layer of flood depth was collected from Barc (2014) (Figure 3n).
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Flood exposure
Three indicators were used for developing a flood exposure map: distance to river, LULC,
and population density (Table 1). Previous studies considered population density as an
important indicator for modeling flood exposure (Zou et al. 2013; Pham et al. 2021a).
Flood-prone areas with a high population density are more vulnerable to flooding than
areas with a low density. In this study, population density data of 2020 was collected
from Worldpop (2020) (Figure 3p). As described in Sec. 2.3, areas near the river are iden-
tified from DEM, and LULC data are collected from Karra et al. (2021).

Flood vulnerability
Flood vulnerability is typically correlated with the type of infrastructures as well as char-
acteristics of the communities in flood-prone areas. Flood vulnerability was estimated
based on three indicators: road density (Ronco et al. 2015; Pham et al. 2021a), age (Brito
et al. 2018), and poverty (wealth index) (Pham et al. 2021a) (Table 1). Generally, flood-
prone areas with a high road density are vulnerable to flooding (Pham et al. 2021a). A
raster road density layer was derived from road network data collected from Warpo
(2018). The population age structure is also a useful flood vulnerability indicator (Brito
et al. 2018). A high percentage of children and older people increase flood vulnerability of
an area (Brito et al. 2018). The age distribution data was retrieved from the WorldPop
(Bondarenko et al. 2020), where the total number of people aged less than 14 and greater
than 60 was estimated for Bangladesh for the year 2020. Also, an area with a high poverty
ratio becomes vulnerable to flooding (Adnan et al. 2020a; Pham et al. 2021a). The wealth
index data was retrieved from Steele et al. (2017) to analyze poverty scenarios. Flood vul-
nerability indicator maps are shown in Figure 3(q)–(s).

Flood risk assessment

We estimated flood risk to be the product of flood hazard, exposure, and vulnerability
(Eq. (4)) (Pham et al. 2021a, 2021b).

Flood Risk ¼ Flood Hazard � Flood Exposure� Flood Vulnerability (4)

Flood susceptibility modeling
Flood susceptibility modeling was considered as a component of flood hazard mapping.
Pixel-wise flood susceptibility scores (FS) were estimated using Eq. (5) (Rahman et al.
2019; Siam et al. 2021a).

FS ¼
Xn
j¼1

wjxj (5)

where n denotes the number of flood conditioning factors used for FSM, xj indicates
selected flood conditioning factors and wj represents the weight of every factor. To find
the optimal weight of every factor for flood susceptibility modeling, a total of six stand-
alone and hybridized DNN models were established: adaptive moment estimation
(ADAM)–rectified linear unit (ReLU)–Softmax–DNN, ADAM–ReLU–Sigmoid–DNN, L2
regularization (L2)–ADAM–ReLU–Softmax–DNN, L2–ADAM–ReLU–Sigmoid–DNN,
Dropout–ADAM–ReLU–Softmax–DNN and Dropout–ADAM–ReLU–Sigmoid–DNN.
Also, a total of six standalone and hybridized SVR models were investigated such as
standalone SVR, Gaussian Radial Basis Function Kernel (Gaussian RBF)–SVR using grid
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search technique, GA–Gaussian RBF–SVR, GA–laplacian RBF kernel (Laplacian
RBF)–SVR, GA–sigmoid or multilayer perceptron kernel (MLP)–SVR and GA–linear ker-
nel (Linear)–SVR. Besides, three conventional ML models (e.g. conditional inference tree,
k-nearest neighbor (KNN), and MLP) were established. All standalone and hybridized
deep neural network models were developed using the ‘keras’ package in the R program-
ming language. The conditional inference tree, k-nearest neighbor, and multilayer percep-
tron models were established using the ‘ctree’ function of ‘party’ package, ‘knnreg’
function of ‘caret’ package, and ‘neuralnet’ function of ‘neuralnet’ package in R,
respectively.

Multicollinearity analysis for optimizing features. In the present study, multicollinearity
among flood causative factors was diagnosed by estimating the variance inflation factors
(VIF) (Midi et al. 2010), using the ‘Car’ package in R, to remove factors that are subject
to multicollinearity. VIF for each factor should be <2.5 to circumvent the model bias
(Midi et al. 2010). If the value is >10, it denotes the presence of multicollinearity (Midi
et al. 2010). After investigating multicollinearity, the flood susceptibility model includes a
total of eleven flood conditioning factors whose VIF values were less than 2.5 (Bai et al.
2011). TWI and flow accumulation layers were discarded since the addition of these two
layers increased VIF values (Table 2).

Feature scaling. Since we exploited gradient descent as well as distance-based models, all
continuous variables such as slope, drainage density, distance to river, elevation and SPI
were scaled using z-score normalization technique (Eq. (6)).

z ¼ x� l
r

(6)

where x is the feature value, l and r are mean and standard deviation of that feature,
respectively. After feature scaling, values of eleven flood conditioning factors were
extracted corresponding to flood and non-flood points.

Standalone and hybridized DNN models. We developed and applied six standalone and
hybridized DNN models for mapping flood susceptibility. In the DNN model, we experi-
mented with three hidden layers consistent with the study by Bui et al (Bui et al. 2019). A
total of eleven nodes (i.e. 11 flood conditioning factors) were taken in the input layer and
one node (sample flood points) in the output layer. We set the number of nodes to eight
in each of the three consecutive hidden layers since the number of nodes in each hidden
layer is suggested to be in between the number of input nodes and output nodes (Bui
et al. 2020b). We used rectified linear activation function (ReLU) in each of the three hid-
den layers. However, in the output layer, we used the sigmoid activation function and the
softmax activation function separately. For the sigmoid activation function, we used the
binary cross-entropy loss function. For the softmax activation function, we applied one-
hot encoded the output variable. Therefore, the number of output nodes became two
instead of one in the case of the softmax activation function. For the loss function, we
used the categorical cross-entropy function for the softmax activation function.

We initialized the weights setting the parameters of mean to 0, the standard deviation
to 0.05, and the biases with the values of zero. For gradient descent optimization, we used
the ADAM optimizer that integrates the gradient descent with momentum technique with
the root mean square propagation (RMSprop) method. In the model, the number of
epochs and mini-batches was set to 50 and 32, respectively. To circumvent the model
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overfitting issue with the train set, we further divided the train set (70% sample points)
into train and validation sets implementing a 10-fold cross-validation technique so that
the prediction accuracy on the test set (30% sample points) gets maximized.

We hybridized two DNN models: ADAM–ReLU–Sigmoid–DNN and
ADAM–ReLU–Softmax–DNN, using two approaches that are L2 regularization and drop-
out technique to reduce the high variance in the models. For L2 regularization, we speci-
fied regularization as the parameter in each of the three hidden layers and set the value of
k to 0.001. For dropout, we added an extra layer after each of the three hidden layers and
set the value of r to 0.6.

Standalone and hybridized SVR models. We developed and evaluated six standalone and
hybridized SVR models for predicting flood susceptibility. First, the baseline SVR model
was developed and combined with four different kernel functions (e.g. linear, gaussian
RBF, laplacian RBF, and MLP kernels) separately. The grid search algorithm and GA
were used for hyperparameter tuning and hybridization.

The objective of SVR is to generate function, describing correlation between input and
output mentioned in Eq. (7).

f xð Þ ¼ wTw xð Þ þ bias (7)

where x e Rn indicates flood conditioning features, w 2 Rn represents weight vector, and
non-linear mapping function is denoted by w xð Þ: The final solution to the constrained
optimization problem in SVR using Lagrangian formulation is described in Eq. (8).

f xð Þ ¼
Xn
j¼1

aj � aj
�� �
k x, xjð Þ þ bias (8)

where aj and aj� denote the Lagrangian multipliers and k xm, xnð Þ ¼ < w xmð Þ,w xnð Þ >
indicates the kernel function. Various types of kernel functions could be employed
(Rahmati et al. 2020). The linear, gaussian RBF, laplacian RBF and MLP kernels can be
described in Eqs. (9)–(12), respectively.

k x, xjð Þ ¼ sumðx:xjÞ (9)

k x, xjð Þ ¼ e�c|x�xj|
2

(10)

k x, xjð Þ ¼ e�
|x�xj |

c (11)

k x, xjð Þ ¼ tanhðAxTxj þ BÞ (12)

where c is an optimizing hyperparameter indicating the spread of the kernel. A is the
scale value and B is the offset value. The prediction accuracy of SVR model also depends
on other parameters, that are, epsilon, e representing approximation quality and the cost
value that determines the tradeoff between model complexity and training error.

In the standalone SVR model, we have set epsilon to 0.1, cost to 1, and gamma to 0.1.
For gaussian RBF–SVR, we optimized gamma and cost using the grid search technique in
combination with the 10-fold cross-validation technique while setting epsilon to 0.1. We
searched from 0.1 to 2 (interval ¼ 0.1) to find the optimal value of gamma. The optimal
value of cost was searched from 0.1 till 10 (interval ¼ 0.1) using a grid search algorithm.
This resulted in generating and training a total of 2000 SVR models with different values
of gamma and cost. The optimal parameter values derived from the grid search technique
produce the least mean squared error (MSE) on the test dataset. Using GA, we optimized
the parameters of GA–Linear–SVR (i.e. epsilon and cost), GA–Gaussian RBF–SVR and
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GA–Laplacian RBF–SVR (i.e. epsilon, cost, and gamma), and GA–MLP–SVR (i.e. epsilon,
cost, scale, and offset). The negative quantity of the MSE on the test set prediction was
defined as the objective function of GA as we maximized the objective function. Again, a
10-fold cross-validation technique was employed while training all the SVR models on the
train set to reduce overfitting.

Conventional ML models. This study also developed three conventional ML models: con-
ditional inference tree, KNN, and MLP models. The conditional inference tree is a distinct
type of decision tree model that employs recursive partitioning of the dependent variables
depending on the correlation values to avoid biasing. This model exploits a significance
test to choose the input variables rather than choosing the variable maximizing the infor-
mation measure. We set the values of the minimum criterion and split to 0.95 and 200,
respectively. KNN is a supervised ML model that assumes the similarity or resemblance
between the novel case and the known or available cases and consequently puts the novel
case into the class or category most similar to the available classes or categories (Costache
et al. 2020a). We experimented with different values for k in the KNN model. However,
the model performed better for a k value of five. MLP is another supervised ML model
that provides a very fundamental feedforward neural network architecture utilized for
both classification and regression-based problems (Ahmadlou et al. 2021). In the architec-
ture of MLP, we used two hidden layers with the first layer containing a total of ten
nodes and the second layer containing a total of three nodes. We set the values of the
threshold to 0.1 and the maximum steps for training to 106. We used RPROPþ as the
learning algorithm for MLP.

Validation and comparison of models. For identifying the best performing flood suscepti-
bility model, this study estimated values of various cutoff-dependent and cutoff-independ-
ent validation indicators using the ‘roc’ and ‘plot.roc’ functions of ‘pROC’ package in R.
The indices include receiver operating characteristic (ROC) and area under the receiver
operating characteristic (AUROC) curves, kappa statistic, overall accuracy (OA), positive

Figure 4. Variation of train loss and accuracy, validation loss and accuracy over the number of epochs for: (a)
ADAM–ReLU–Sigmoid–DNN, (b) ADAM–ReLU–Softmax–DNN, (c) L2–ADAM–ReLU–Sigmoid–DNN,
(d) L2–ADAM–ReLU–Softmax–DNN, (e) Dropout–ADAM–ReLU–Sigmoid–DNN and (f) Dropout–ADAM–
ReLU–Softmax–DNN models.
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predictive value (PPV), negative predictive value (NPV), sensitivity, specificity, and MSE.
We used Youden’s index for estimating the optimal cutoff point (Youden 1950) and
binarized the predicted flood susceptibility scores by the models (Adnan et al. 2020b). We
also estimated the seed cell area index (SCAI) (Akay 2021) values for validation and com-
parison of flood susceptibility, hazard, exposure, vulnerability, and risk models.

Flood susceptibility map. Applying the best-performing flood prediction model, a flood
susceptibility map of Bangladesh was developed using the ArcGIS 10.8 software. The sus-
ceptibility values were normalized on a 0–1 scale. The resultant flood susceptibility map
was categorized into five classes using the equal interval method in GIS: Very Low
(0–0.2), Low (0.2–0.4), Medium (0.4–0.6), High (0.6–0.8), and Very High (0.8–1)
(Rahman et al. 2019).

Figure 5. (a) Performance of all the trained Gaussian RBF–SVR models. Variation of fitness value over the number of
generations in (b) GA–Linear–SVR, (c) GA–Gaussian RBF–SVR, (d) GA–Laplacian RBF–SVR and (e) GA–MLP–SVR models.
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Flood hazard modeling
Flood hazard in the study area was estimated using Eq. (13) (Pham et al. 2021a, 2021b).

Flood Hazard Score ¼ A1 � Flood Susceptibility Scoreþ B1 � Flood Depthþ C1

� Rainfall (13)

where A1, B1, and C1 are the weights of flood susceptibility, flood depth, and rainfall,
respectively. Although previous studies reported the efficacy of the classical AHP tool in
modeling flood hazards (Pham et al. 2021a, 2021b), this study utilized a fuzzy AHP model
(Zadeh 1996) due to its higher prediction accuracy (B€uy€uk€ozkan and Feyzı og^Lu
2004). First, fuzzy pairwise comparison matrices of the criteria and sub-criteria were
developed using the triangular fuzzy numbers (TFN) of the scale of Saaty on relative

Figure 6. Conditional inference tree based on train set.

Figure 7. Validation of (a) the standalone and hybridized SVR, (b) standalone and hybridized DNN and, (c) other
machine learning models using the ROC curves.
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importance (Ekmekcio�glu et al. 2021). Then weights of different criteria and the local
weights of their sub-criteria were generated (Liou and Wang 1992). We also conducted a
pairwise comparison of each alternative against every sub-criterion. Global weights of all
sub-criterion were estimated by multiplying the weight of each criterion by their local
weights. The flood susceptibility parameter was given the most importance, followed by
rainfall and flood depth (Pham et al. 2021a). The higher values of all these three criteria
indicate a higher flood hazard score. The validity of the weights was checked by ensuring
a consistency ratio of less than 10%, where the consistency ratio is defined in Eqs. (14)
and (15) (Liou and Wang 1992).

Consistency Index ¼ kmax�k
k� 1

(14)

Consistency Ratio ¼ Consistency Index
Random Index

(15)

where kmax denotes the highest eigenvalue that belongs to the decision matrix and k is
the number of criteria. We set a random index value consistent with the study of Saaty
and Tran (2007). The optimism index was set to 80%. Finally, a weighted sum method
was employed in Eq. (13) to estimate a flood hazard score.

Flood exposure modeling
The flood exposure score was estimated using Eq. (16) (Pham et al. 2021a, 2021b).

Flood Exposure Score ¼ A2 � Distance to River þ B2 � LULC þ C2

� Population Density (16)

Table 4. Model performance using different statistical indices.

Models Cutoff AUROC OA Kappa Sensitivity Specificity PPV NPV MSE

ADAM-ReLU-Sigmoid-DNN 0.697 0.956 0.893 0.785 0.911 0.874 0.884 0.903 0.087
ADAM-ReLU-Softmax-DNN 0.507 0.957 0.894 0.788 0.929 0.857 0.872 0.920 0.083
L2-ADAM-ReLU-Sigmoid-DNN 0.603 0.955 0.898 0.795 0.927 0.867 0.880 0.919 0.084
L2-ADAM-ReLU-Softmax-DNN 0.848 0.950 0.883 0.766 0.894 0.872 0.880 0.887 0.108
Dropout-ADAM-ReLU-Sigmoid-DNN 0.618 0.904 0.887 0.773 0.960 0.810 0.841 0.951 0.117
Dropout-ADAM-ReLU-Softmax-DNN 0.429 0.940 0.892 0.783 0.941 0.840 0.860 0.932 0.140
SVR 0.554 0.914 0.847 0.693 0.878 0.815 0.833 0.864 0.126
Gaussian RBF-SVR 0.572 0.944 0.879 0.759 0.913 0.844 0.860 0.902 0.093
GA-Gaussian RBF-SVR 0.582 0.945 0.884 0.768 0.906 0.862 0.873 0.897 0.092
GA-Laplacian RBF-SVR 0.394 0.949 0.881 0.761 0.944 0.815 0.842 0.932 0.090
GA-MLP-SVR 0.525 0.943 0.883 0.766 0.908 0.857 0.869 0.899 0.116
GA-Linear-SVR 0.496 0.931 0.866 0.732 0.934 0.795 0.827 0.920 0.119
Conditional Inference Tree 0.639 0.946 0.869 0.740 0.812 0.931 0.925 0.825 0.087
KNN 0.600 0.914 0.842 0.684 0.873 0.810 0.828 0.859 0.114
MLP 0.633 0.924 0.879 0.759 0.915 0.842 0.859 0.905 0.108

Table 5. Consistency ratio for flood risk components.

Component Consistency ratio (%) Criteria Consistency ratio (%)

Flood hazard 8.70 Flood susceptibility 9.88
Flood depth 8.93
Rainfall 6.17

Flood exposure 8.11 Distance to river 8.02
LULC 7.79
Population density 9.94

Flood vulnerability 4.19 Road density 7.61
Age 5.88
Poverty (Wealth index) 7.99
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where A2, B2, and C2 are the weights of distance to river, LULC, and population density,
respectively. For designing fuzzy pairwise comparison matrices of criteria and sub-criteria
for flood exposure modeling, the population density parameter was prioritized for its
positive association with exposure (Pham et al. 2021b), followed by LULC and distance to
river (Pham et al. 2021b).

Flood vulnerability modeling
The flood vulnerability score can be defined in Eq. (17) (Brito et al. 2018; Pham et al.
2021a, 2021b).

Flood Vulnerability Score ¼ A3 � Road Densityþ B3 � Ageþ C3

� Poverty ðWealth IndexÞ (17)

Figure 8. (a) Flood susceptibility, (b) flood hazard, (c) flood exposure and (d) flood vulnerability maps of Bangladesh.
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Table 6. Weights of criteria as well as sub-criteria generated by fuzzy AHP method.

Component Criteria Weight Class Sub-criteria Local weight Global weight

Flood hazard Flood susceptibility 0.6037 0–0.2 Very Low 0.0309 0.0187
0.2–0.4 Low 0.0843 0.0509
0.4–0.6 Moderate 0.1698 0.1025
0.6–0.8 High 0.2870 0.1733
0.8–1 Very High 0.4280 0.2584

Flood depth 0.1003 No Flooding 1 0.0412 0.0041
<0.30 2 0.0757 0.0076
0.30–1.83 3 0.1223 0.0123
1.83–3.05 4 0.2950 0.0296
>3.05 5 0.4658 0.0467

Rainfall 0.2960 245.4–333.7 1 0.0475 0.0141
333.8–435.8 2 0.0870 0.0258
435.9–560 3 0.1408 0.0417
560.1–725.5 4 0.2770 0.0820
725.6–949.02 5 0.4476 0.1325

Flood exposure Distance to river 0.0918 0–432 1 0.4199 0.0385
432–1297 2 0.2597 0.0238
1297–2594 3 0.1922 0.0176
2594–4899 4 0.0937 0.0086
4899–36890 5 0.0345 0.0032

LULC 0.3727 Water 1 0.0321 0.0120
Bare Land 2 0.0871 0.0325
Vegetation 3 0.2213 0.0825
Crops 4 0.2897 0.1080
Built Area 5 0.3698 0.1378

Population density
(Population per cell)

0.5355 0–1 1 0.0298 0.0160
1–2 2 0.1104 0.0591
2–3 3 0.1579 0.0846
3–6 4 0.2785 0.1491
6–370 5 0.4234 0.2267

Flood vulnerability Road density 0.0859 0–0.9 1 0.0375 0.0032
0.9–1.3 2 0.1046 0.0090
1.3–1.6 3 0.1601 0.0138
1.6–1.9 4 0.2287 0.0196
1.9–3.4 5 0.4692 0.0403

Age (< 14 and > 60) 0.2643 0–1 1 0.0395 0.0104
1–2 2 0.1110 0.0293
2–3 3 0.1700 0.0449
3–6 4 0.2433 0.0643
6–101 5 0.4362 0.1153

Poverty (Wealth index) 0.6498 �1.2� 0.61 1 0.4141 0.2691
�0.6� 0.3 2 0.2492 0.1619
�0.29–0.07 3 0.1797 0.1168
0.071–0.64 4 0.1237 0.0804
0.65–2.2 5 0.0334 0.0217

Table 7. SCAI measurements of flood susceptibility, exposure, hazard, vulnerability and risk maps.

Class

Flood
susceptibility
(L2-ADAM-
ReLU-

Sigmoid-DNN)

Flood
susceptibility
(ADAM-ReLU-
Softmax-DNN) Flood exposure Flood hazard

Flood
vulnerability Flood risk

Very low 1.56 3.24 1.56 1.49 1.20 1.40
Low 0.60 2.09 0.85 0.81 0.93 0.96
Moderate 0.63 1.92 0.97 0.66 0.91 0.66
High 0.53 1.89 0.97 0.53 1.55 0.59
Very high 0.56 0.68 3.17 0.59 1.04 0.67
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where A3, B3, and C3 are the generated weights of road density, age, and poverty (wealth
index) respectively utilizing the fuzzy AHP model. Here, poverty (wealth index) was given
the highest preference (Pham et al. 2021a), followed by age and road density.

Flood risk modeling
After estimating flood hazard, exposure, and vulnerability scores using fuzzy AHP models,
we normalized their scores on a 0–1 scale. Finally, the flood risk map of Bangladesh was
derived using Eq. (4) in GIS. In this study, all fuzzy AHP models were established using
MATLAB R2020a software.

Sensitivity analysis of flood causative factors
This study performed a sensitivity analysis of all the flood causative factors in modeling
flood susceptibility, hazard, exposure, vulnerability, and risk by estimating their import-
ance rank using the random forest (RF) function. The %IncMSE and IncNodePurity indi-
cators were exploited to rank the flood causative factors, estimated using the
‘randomForest’ package in R. The %IncMSE measures the upsurge in the MSE value of
model prediction when the values of a feature are randomly permuted. The
IncNodePurity indicates the total reduction of node impurities estimated by the Gini
Index from variable splitting averaged over all the decision trees. The higher the values of
%IncMSE and IncNodePurity suggest greater importance of a feature in the model—a
greater sensitivity (Rahmati et al. 2020; Siam et al. 2021a).

Results

Flood susceptibility assessment

Standalone and hybridized DNN models
Figure 4 shows the variation of the loss and accuracy metrics over the progression of 50
epochs in each of the six DNN models on the train and validation datasets. The
L2–ADAM–ReLU–Softmax–DNN model is found to be the best-performed model for the
train set, with an accuracy value of 0.8892. However, the ADAM–ReLU–Sigmoid–DNN
model yielded the highest accuracy (0.8196) with validation data.

Standalone and hybridized SVR models
In this study, the number of support vectors is found to be 1650, 1266, 1086, 1335, 756,
and 978 for standalone SVR, Gaussian RBF–SVR, GA–Gaussian RBF–SVR, GA–Laplacian
RBF–SVR, GA–MLP–SVR, and GA–Linear–SVR models, respectively, during the training
phase. This indicates that the MLP kernel reduces the complexity of the SVR model more
compared to other kernels. The algorithm settings and solutions of GA–Gaussian
RBF–SVR, GA–Laplacian RBF–SVR, GA–MLP–SVR, and GA–Linear–SVR are shown in
Table 3.

Figure 5(a) shows the performance of all the trained Gaussian–RBF–SVR models using
grid search in a contour plot where values of gamma are shown along the x-axis and val-
ues of cost are in the y-axis while the z-axis shows corresponding MSE. The optimal value
of cost is 1.10 while the optimal gamma value is 0.10 for the best Gaussian RBF–SVR
model with an MSE of 0.0925 from the grid search result. In the best Gaussian RBF–SVR
model, weight values of slope, distance to river, drainage density, elevation, SPI, soil tex-
ture, soil permeability, LULC, geology, curvature, and aspect are �30.03, �40.58, 8.15,
�47.18, 10.20, 18.70, 25.02, �2.52, 2.96, 0.09 and �0.08, respectively, where the bias is
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0.39. The fitness values of the other four hybridized SVR models are shown in
Figure 5(b)–(e).

Conventional ML models
Among the other three ML models employed, the conditional inference tree performed
better than KNN and MLP models in terms of fitting the train data more accurately.
Figure 6 illustrates the fitted conditional inference tree on the train set.

Model validation and comparison
This study compares all fifteen ML models to select the best-performed model for flood
susceptibility mapping in Bangladesh. Figure 7 illustrates the ROC curves of all models
based on the test set.

The ADAM–ReLU–Softmax–DNN model yields the highest prediction accuracy, with
an AUROC value of 95.7%, followed by the ADAM–ReLU–Sigmoid–DNN model
(AUROC—95.6%) and the L2–ADAM–ReLU–Sigmoid–DNN model (AUROC—95.5%)
(Figure 7b). A total of four DNN models have an AUROC greater than or equal to 95%.
Contrarily, SVR models have relatively a lower prediction accuracy, where the
GA–Laplacian RBF–SVR model obtained the highest AUROC value of 94.9% (Figure 7a).
In the case of conventional ML models, the conditional inference tree obtained the high-
est AUROC value of 94.6% (Figure 7c). Model comparison results indicate a higher effi-
cacy of the DNN models over the other models in estimating flood susceptibility. Table 4
presents the outcomes of performance assessment of different models.

The L2–ADAM–ReLU–Sigmoid–DNN model obtains the highest OA value of 0.898
and a kappa statistic of 0.795, followed by the ADAM–ReLU–Softmax–DNN (OA ¼
0.894 and kappa ¼ 0.788) and ADAM–ReLU–Sigmoid–DNN (OA ¼ 0.893 and kappa ¼
0.785) models. However, the ADAM–ReLU–Softmax–DNN model achieves the lowest
MSE value of 0.083, followed by the L2–ADAM–ReLU–Sigmoid–DNN (MSE ¼ 0.084)
and ADAM–ReLU–Sigmoid–DNN (MSE ¼ 0.087) models. Based on the AUROC, OA,
kappa statistic, and MSE metrics together, this study identifies the
L2–ADAM–ReLU–Sigmoid–DNN and the ADAM-ReLU-Softmax-DNN models as the
best two models for flood susceptibility mapping. However, the estimated SCAI values
(Table 5) of flood susceptibility indicate that the hybridized
L2–ADAM–ReLU–Sigmoid–DNN model outperforms the ADAM-ReLU-Softmax-DNN
model. Therefore, this study uses the hybridized L2–ADAM–ReLU–Sigmoid–DNN model
for mapping flood susceptibility in Bangladesh.

Flood hazard assessment

Figure 8(b) shows the resultant flood hazard map. Among three criteria of flood hazard,
flood susceptibility received the highest weight, followed by rainfall and flood depth
(Table 6). About 20% of the total area is estimated to be flood hazard-prone zones of
moderate to very high levels of severity. Southwestern and northeastern Bangladesh, as
well as areas adjacent to major rivers, are high hazard zones (Figure 8b). The SCAI of
high and very high classes in the hazard map is the lowest, with values of 0.53 and 0.59,
respectively (Table 7).
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Flood exposure assessment

Figure 8(c) shows the flood exposure map of Bangladesh. About 40% of the country is
categorized as moderate to very high magnitudes. Among the three variables (distance to
river, LULC, and population density), the estimated weight for population density is the
highest (Table 6). Unsurprisingly, areas characterized by high population density are
highly exposed to flooding.

Flood vulnerability assessment

The flood vulnerability map is shown in Figure 8(d). Results show that about 69% of
Bangladesh is vulnerable (moderate to very high) to flooding. The highest weight for the
parameter wealth index (WI) (Table 6) indicates that the economic status of the people is
one of the major determining flood vulnerability factors. Areas characterized by a low
wealth index are highly vulnerable to flooding.

Flood risk assessment

Table 6 exhibits weights of criteria as well as sub-criteria for flood hazard, exposure, and
vulnerability. Local weights indicate the type of association that exists between floods and
various risk indicators. For instance, flood susceptibility, flood depth, rainfall, population

Figure 9. Flood risk map of Bangladesh.
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density, road density, and age are positively associated with flood risk. On the other hand,
distance to river and wealth index are negatively correlated. In the case of LULC, built-up
areas and croplands are highly prone to flood risk, particularly in areas with high flood
potentials. In the case of the SCAI results, moderate to very high flood risk zones yield
relatively low SCAI values. These results indicate a good agreement between the observed
flood locations and modeled flood risk zones.

Table 5 represents the consistency ratio for each component and criteria which is less
than 10% i.e. acceptable in each case.

Figure 8(a)–(d) illustrates the predicted flood susceptibility, flood hazard, flood expos-
ure, and flood vulnerability maps of Bangladesh. The flood risk map obtained in this
study is shown in Figure 9. About 20.45% of the area is categorized as flood risk zones,
where the percentages of moderate, high, and very high flood risk-prone zones are
13.37%, 5.44%, and 1.64%, respectively. The northeastern region of Bangladesh, as well as
areas near the GBM rivers, have high flood damage potential.

Figure 10 shows the percent of flood risk areas in a few districts where floods affected
a significant number of people in 2020. For instance, in the Kurigram district, a total of
227,440 people (10.4% of the total population of Kurigram) were affected during mon-
soon flooding in 2020. This study found that about 52.95% of the total area of Kurigram
district is a flood risk zone of moderate to very high severity. Similarly, in other northern
districts such as Gaibandha, Nilphamari, and Ranpur, a significant number of people were
flood-affected. This study also found highly risk-prone regions. In the case of northeastern
Bangladesh, districts such as Sunamganj and Netrakona are in this risk zone, with damage
potential of 64.43% and 65.38%, respectively. In these two districts, a total of 113,237 and
84,300 people were inflicted by floods in 2020 (Care 2020).

Sensitivity analysis results

This study estimates the sensitivity of all corresponding factors in modeling flood suscep-
tibility, hazard, exposure, vulnerability, and risk with respect to %IncMSE and

Figure 10. Percentage of flood risk prone areas in different districts.
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Figure 11. Sensitivity analysis of flood causative factors in modeling flood susceptibility, hazard, exposure, vulnerabil-
ity and risk based on %IncMSE and IncNodePurity.
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IncNodePurity scores provided by RF. The flood susceptibility model is highly sensitive to
factors such as elevation and distance to rivers (Figure 11a and 11b). In the case of flood
hazard, flood susceptibility is the most significant parameter (Figure 11c and 11d). LULC
and population density are the imporant factors determining flood exposure (Figure 11e
and 11f). In the case of flood vulnerability, poverty is the most influential factor (Figure
11g and 11h). Finally, this study notes that flood risk is sensitive to flood hazard (Figure
11i and 11j). A recent study (Adnan et al. 2020a) validates the results of flood exposure,
vulnerability, and risk.

Discussion

This study aimed to present a flood risk assessment framework using hybridized DNN
and fuzzy AHP models, hypothesizing that the use of hybridized models would improve
the accuracy of flood risk models. Hence, we developed and evaluated the performance of
fifteen models including twelve standalone and hybridized ML models and three conven-
tional ML models. The results exhibit the efficacy of the hybridized DNN architectures
over all other models. This is a first attempt to combine hybridized DNN architectures
with fuzzy AHP models to assess flood risk in a complex flood regime like del-
taic Bangladesh.

In the case of flood susceptibility, elevation and distance to river were found as the
most influential factors influencing flood potentials. Both these findings are supported by
other recent studies (Wang et al. 2019; Rahmati et al. 2020; Chou et al. 2021; Pham et al.
2021a, 2021b). This study established a total of fifteen flood susceptibility models that
produced an AUC value of more than 90%, indicating an excellent prediction accuracy
(Arabameri et al. 2019). Flood susceptibility map produced using the hybridized
L2–ADAM–ReLU–Sigmoid–DNN model (Figure 8a) yielded the highest prediction accur-
acy, resulting in a good agreement with the flood inundation map of Bangladesh in 2020.

The flood susceptibility map produced in this study showed that the northeastern part
of Bangladesh is highly susceptible, including Netrokona, Sunamganj, Kishoreganj, and
Mymensingh. These districts are also in high-risk-prone zones. All these districts include
large water bodies (locally known as ‘Haor’) and faced severe flooding in the last couple
of years. These districts are also characterized by a low slope and elevation. A recent
study reported that areas with a lower slope and elevation have greater flood damage
potential (Adnan et al. 2020b). On the contrary, districts in the southeastern zone such as
Khagrachori and Banderbans are characterized by high elevation areas and low-density
population; hence, pose a relatively low risk. These districts mostly remained inundation-
free during the flood events of 2020 (Figure 2). This finding is in accord with other stud-
ies that noted that elevation has an inverse relationship with flooding in general (Rahman
et al. 2021b). The flood risk map produced in this study showed that several districts in
northern and northeastern parts of Bangladesh are located in a high-risk zone, where a
significant number of people were affected during the 2020 flood event. Previous studies
also reported that the flood potentials of these districts are very high primarily due to
their proximity to major rivers (Rahman et al. 2019; Siam et al. 2021a). This finding is
also consistent with studies that mentioned that areas closer to the rivers are highly at
risk of flood disaster (Talukdar et al. 2020). This study also noted that flood hazard, vul-
nerability, and risk models are sensitive to flood susceptibility, poverty, and flood hazard,
respectively. Several recent studies (Adnan et al. 2020a, 2020b; Siam et al. 2021a) validates
the results of flood hazard, vulnerability, and risk.
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Although the proposed framework resulted in a very high flood risk prediction accur-
acy, several limitations and uncertainties can be anticipated. First, this study considered
only one flood event due to the unavailability of long-term flood observation data at the
national level. Second, flood susceptibility, hazard, exposure, and vulnerability indicators’
data had differing spatial resolutions. For these reasons, the independent and dependent
variables used in this study might be subject to label noise. A recent study has observed
negative effects of label noise on the performance of ML-based flood susceptibility model-
ing (Siam et al. 2021b). Future research can address these limitations by establishing label
noise-tolerant standalone and hybridized ML models.

Conclusion

In the present study, a novel approach to flood risk assessment in Bangladesh was devel-
oped, combining hybridized DNN and fuzzy AHP methods. Based on various model per-
formance assessment indices, the hybridized L2–ADAM–ReLU–Sigmoid–DNN model was
selected as the best-performed flood susceptibility model. The resultant flood susceptibility
map was used to develop a flood hazard map utilizing the fuzzy AHP model. Finally, the
flood risk map of Bangladesh was developed by integrating flood hazard, exposure, and
vulnerability maps. Despite some uncertainties and limitations, the study promotes the
use of hybridized DNN model for spatial flood risk modeling to achieve a country-scale
flood risk map. The proposed flood risk assessment framework is expected to be useful
for policymakers to better manage flood risk. For future research, this study can be
extended to appraise spatiotemporal flood risk assessment using hybridized DNN models.
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