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ABSTRACT  
In this work, the three outstanding polynomials- Legendre, Chebyshev  and Gegenbauer polynomials 

and the well-known  Galerkin method are used to obtain the approximate solutions of linear Volterra 

integral equations of both first  and second kind including Abel’s integral equation. 
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INTRODUCTION 

Linear and nonlinear Volterra integral equations (VIE) of the first or second kind especially 

Abel’s integral equation encompasses many significant mathematical approaches in modeling 

endeavor which spread over multiple variety of basic scientific disciplines , engineering 

disciplines and other connected areas. There are many works on different analytic methods 

namely series  solution  method, successive substitution method,  Adomian's  decomposition  

method and  Laplace transform method which generally produce the analytic closed form 

solution of such equations. But, it is very important to employ numerical techniques to find 

solutions of many integral equations because of unavailability of their solutions in closed 

form. 

Some classes of integral equations of both first and second kinds were solved numerically 

using Bernstein polynomials by Mandal and Bhattacharya [7] and Maleknejad et al [8] also 

approached  same polynomial method for finding approximate solutions of some Volterra 

integral equations. To find numerical solutions of different Volterra integral equations, 

Rahman and Islam [10] used Legendre polynomials, Rahman and Islam [9] used Hermite and 

Chebyshev Polynomials and presented comparison, Shahsavaran[12] used Block-Pulse 

Functions and Taylor Expansion by Collocation Method.  

 

In this paper, we have solved six illustrative examples of Volterra integral equations of first 

and second kind numerically by the technique of very well-known Galerkin method [5] and 

Legendre, Chebyshev and Gegenbauer piecewise polynomials [1] are used as trial function in 

the basis. Comparative performance of these polynomials in this regard of solving different 

varieties of VIE is also presented graphically.  
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 THE GENERAL METHOD: 

 

In this section, first we consider the Volterra integral equation (VIE) of the first kind [1, 11, 

14], given by         

         bxaxfdttutxK
x

a

 ),()(),(  (1)  

where )(xu is the unknown function, to be determined, )t,x(K is the kernel function, 

continuous or  discontinuous and )x(f being the known function satisfying 0)a(f   .Now 

we use the technique of Galerkin method, [5], to find an approximate solution )x(u~ . For this, 

we assume that  
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where )x(Ni ’s are Legendre or Chebyshev or Gegenbauer polynomials of degree i defined in 

equation by next section, ic ’s are unknown parameters to be determined and n is the number 

of piecewise  polynomials.  An approximate solution )x(u~  will not produce an identically 

zero function but a function called the residual function. We get the residual function as 
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Now the Galerkin equations corresponding to the approximation (2), given by 
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Using (3) and (4) after minor simplification, we obtain  
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The above equations (5) are equivalent to the matrix form   

BDC             ………..(6)  

where the elements of the matrix D,C  and B are and j,ii d,c and jb respectively, given by    
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Now the unknown parameters ic  are determined by solving the system of equations (7) and 

substituting these values of parameters in (2), we get the approximate solution )x(u~ of the 

integral equation (1).  
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Now, we consider the Volterra integral equation (VIE) of the second kind [1, 11, 14] given by  

 bxa),x(fdt)t(u)t,x(K)x(u
x

a
      ………….. (8)  

where )x(u is  the unknown  function  to be determined, )t,x(K is  the kernel  function, 

continuous or discontinuous, )x(f being the known  function and   is  the constant. Then 

applying the same procedure as described above, we obtain the matrix form   

BDC         …………. (9)  

where the elements of the matrix D,C  and B are and j,ii d,c and jb respectively, given by    
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Now the unknown parameters ic are determined by solving the system of equations (10) and 

substituting these values of parameters in (2), we get the approximate solution )x(u~  of the 

integral equation (8).  The absolute error for this formulation is defined by Absolute 

Error )x(u~)x(u 
. 

The formulation for nonlinear integral equation will be discussed by considering numerical 

problems in the next section. 

 

THE POLYNOMIAL BASES 

Legendre Polynomials: The general form of the Legendre polynomials [10] of n-th degree is 

defined by   
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Chebyshev Polynomials: 

The Chebyshev polynomials, named after Pafnuty Chebyshev, are a sequence of orthogonal 

polynomials which are related to de Moivre's formula and which can be defined recursively. 

The general form of the Chebyshev polynomials [1] of nth degree is defined by 

 










2

0

22 )1(
)2)(2(2

)()1(
)(

n

r

rnr

n

r

n xx
rnr

n
xP

; 





















oddisnif
2

)1n(

evenisnif
2

n

2

n
 

Gegenbauer Polynomials: The general form of the Gegenbauer polynomials [1] of n-th 

degree is defined by   
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 ILLUSTRATIVE EXAMPLES 

Here we illustrate the above mentioned methods with the help of six illustrative examples, 

which include three first kind and three second kind Volterra integral equations with two 

regular kernels and four with weakly singular kernels.  

 Example 1: Consider the first kind Abel’s integral equation [9] 

2
x

0
x56105(x

105

2
dt)t(u

tx
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1x0)x48 ,3 

………………….. (11)

 

The exact solution is 1xx)x(u 23  …………………………… (12)

 

Using Legendre, Chebyshev and Gegenbauer polynomials and the formula derived in the 

equation (11) for n=10, we get the approximate solution is 1xx)x(u 23  , which is the 

exact solution although we obtained  errors in the order of 1610 for Legendre, Chebyshev and 

Gegenbauer polynomial before using the code for simplifying the approximate polynomial 

solution in Mathematica. . On the contrary, the accuracy is found nearly the order of 710  for 

10n by using Bernstein approximation [2].  

 Example 2: Consider an Abel’s integral equation (VIE of first kind with weakly singular 

kernels) of the form [9] 
1x0xdt)t(u
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The exact solution is,  
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Results found using the aforementioned three polynomial bases have been shown in Table 1 

for 10n . Graphs of the absolute errors among the approximate solutions found by using the 

polynomials for different values of x are portrayed in Figure 1.1 for 10n . The absolute 

errors are obtained in the order of  
1110

 , 
810
 and 

1010
 for Legendre, Chebyshev and 

Gegenbauer polynomials basis respectively for 10n . On the other hand, the absolute errors 

were obtained by Mandal and Bhattacharya [7] in the order of 
710
for 10n  on their case 

of Bernstein’s polynomials. Also, by using Hermite and Chebyshev polynomials [2], the 

absolute errors were obtained in the order of  
810
 for 10n . 

Example 3:  We consider the Volterra integral equation of the first kind of the form [7] 
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Table 1: Value X
 

Value 

x 

Exact Value Error Legendre Error Chebyshev Error Gegenbauer 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

0 

0.00004090247078 

0.00092551726280 

0.00573845776258 

0.02094206504431 

0.05716294070838 

0.12984647671933 

0.25983085548789 

0.47386483855632 

0.80508333255323 

1.29344969623889 

5.13597390111145E-9 

4.43825922579472E-10 

3.28625681366635E-10 

2.01759171598012E-10 

4.10407071151808E-11 

5.50445769511818E-11 

9.42344310621103E-11 

5.39638170007387E-11 

1.01587793593791E-10 

3.26004586629304E-11 

2.55513633730427E-9 

7.81382957397230E-8 

1.79162573994305E-8 

6.61708506884779E-9 

1.43124477625718E-8 

1.39012686079230E-8 

1.08402477386643E-8 

5.15487728891539E-9 

5.44123377859686E-9 

1.83899482716833E-8 

1.15052754070556E-8 

2.78497938403739E-7 

1.035634223484429E-8 

1.746737563544090E-9 

1.076778299993360E-9 

1.523428222472115E-9 

1.273204309521177E-9 

8.638695742836547E-10 

2.606089144411648E-10 

7.346539900731727E-10 

1.776374311619803E-9 

1.264312650560714E-9 

2.636737068141797E-8 

 

Results found using the aforementioned three polynomial bases have been shown in Table 2 

for 10n . Graphs of the absolute errors between the exact solution and the approximate 

solution for different values of x are portrayed in Figures 1.2 for 10n . The absolute errors are 

obtained in the order 1110  , 810  and 910  for Legendre, Chebyshev and Gegenbauer 

polynomials basis respectively for 10n . On the other hand, the absolute errors were obtained 

in the order of   1210  for 10n  (degree of Bernstein’s polynomials) by Bhattacharya and 

Mandal [7]. 
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Table 2: Value X1 
Value 

x 

Exact Value Error Legendre Error Chebyshev Error Gegenbauer 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

0 

0.04659792366325 

0.18639169465301 

0.41938131296929 

0.74556677861207 

1.16494809158137 

1.67752525187717 

2.28329825949948 

2.98226711444831 

3.77443181672364 

4.65979236632548 

1.27861313965214E-12 

1.89298114113296E-11 

2.06057217200480E-11 

3.43867868111772E-11 

1.05199269921296E-10 

6.55651116159591E-11 

1.01713009261525E-10 

2.32712406723860E-10 

2.17056879925115E-10 

2.50013223326747E-10 

6.30774094633836E-9 

1.4417787391762E-10 

2.5031247423255E-9 

3.1641265852336E-9 

3.3568217172808E-9 

1.3516609234076E-8 

1.0457856356033E-8 

1.1727520603578E-8 

3.2398446831591E-8 

3.3471384603789E-8 

4.0316383345011E-8 

9.0915954153109E-7 

4.33772327613850E-11 

7.43061711140994E-10 

9.30351318292904E-10 

1.02026983529668E-9 

4.02104945439717E-9 

3.07206169732431E-9 

3.51393643001808E-9 

9.59242368175143E-9 

9.85681341612869E-9 

1.18482671701455E-8 

2.68739644501826E-7 

 

Example 4: Consider the second kind Abel’s integral equation [9] of the form 

10)
6435

4096
1()(

1
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0
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
  xxxdttu

tx
xu

x

     

…………….. (15) 

which has the exact solution, .x)x(u 7  
Using Legendre, Chebyshev and Gegenbauer 

polynomials and the formula derived in the equation (11) for 10n , we get the approximate 

solution is 7x)x(u  , which is the exact solution although we obtained errors in the order of 

1710  before using the code for simplifying the approximate polynomial solution 

Mathematica. On the other hand, the absolute errors were obtained in the order of 710  for 

10n  (degree of Bernstein’s polynomials) by Bhattacharya and Mandal [7] 

 

Example 5: Consider the second kind Abel’s integral equation [4] of the form 
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the exact solution 
1x

1
)x(u


  

Results found using the aforementioned three polynomial bases have been shown in Table 3 

for 10n . Graphs of the absolute errors between the exact solution and the approximate 

solution for different values of x are portrayed in Figures 2.1 for 10n . The absolute errors 
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are obtained in the order of  910  , 910  and 910 for Legendre, Chebyshev and Gegenbauer 

polynomial basis respectively for 10n . On the other hand, the absolute errors were 

obtained in the order of  310  [12] reported the error up to for 64K  (number of block 

pulse function) 

Table 3 : Value X2 
Value 

x 

Exact Value Error Legendre Error Chebyshev Error Gegenbauer 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

1 

0.95346258924559 

0.91287092917527 

0.87705801930702 

0.84515425472851 

0.81649658092772 

0.79056941504209 

0.76696498884737 

0.74535599249992 

0.72547625011001 

0.70710678118654 

9.59502803384918E-9 

2.70299934513793E-9 

1.99607728219855E-9 

1.03849816434828E-10 

2.46681995421988E-9 

2.81552714289900E-9 

6.27414473476345E-10 

2.00786360977645E-9 

3.32255431723152E-9 

3.91502149887979E-9 

1.30022160284892E-8 

1.01251286354447E-8 

2.86652737921985E-9 

2.12932481972419E-9 

5.21426820144566E-11 

2.53896954981479E-9 

2.94824872332305E-9 

6.93704128542204E-10 

2.06197284705736E-9 

3.45185235908552E-9 

4.07280244446011E-9 

1.35368096186118E-8 

5.20723530695421E-9 

1.50179749459054E-9 

1.10852423051565E-9 

3.20934854147751E-10 

1.86555547193989E-9 

1.94561010309576E-9 

2.91286195480557E-10 

1.58107235671783E-9 

2.47888841724339E-9 

2.91971657998331E-9 

9.713976892743897E-9 

 

Example 6: Consider the second kind Abel’s integral equation [14] of the form 

1x0xdt)t(u)tx()x(u ,
x

0
 

   
…………… (17) 

the exact solution,  xsin)x(u   

Results found using the aforementioned three polynomial bases have been shown in Table 2.2 

for 10n . Graphs of the absolute errors between the exact solution and the approximate 

solution for different values of x are portrayed in Figures 2.2 for 10n .  
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Table 4: ValueX3 
Value x Exact Value Error Legender Error Chebyshev Error Gegenbauer 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

0 

0.09983341664682 

0.19866933079506 

0.29552020666133 

0.38941834230865 

0.47942553860420 

0.56464247339503 

0.64421768723769 

0.71735609089952 

0.78332690962748 

0.84147098480789 

3.13488209448354E-14 

8.97892871165595E-15 

7.38298311375729E-15 

7.60502771868232E-15 

5.49560397189452E-15 

0 

5.44009282066326E-15 

7.54951656745106E-15 

7.32747196252603E-15 

8.65973959207622E-15 

3.06421554796543E-14 

3.13488209675312E-14 

8.95117313604032E-15 

7.41073868937292E-15 

7.66053886991358E-15 

5.55111512312578E-15 

5.55111512312578E-17 

5.21804821573823E-15 

7.77156117237609E-15 

7.32747196252603E-15 

8.88178419700125E-15 

3.06421554796543E-14 

3.13488209236389E-14 

8.97892871165595E-15 

7.38298311375729E-15 

7.60502771868232E-15 

5.55111512312578E-15 

0 

5.32907051820075E-15 

7.43849426498854E-15 

7.21644966006351E-15 

8.88178419700125E-15 

3.06421554796543E-14 

 

 CONCLUSION 

Our attempt to finding solutions of chosen all six VIE by applying outstanding Galerkin 

method using the three polynomials as trial basis was led to a quite satisfactory standpoint. 

Clearly, all our presented examples of different variety encompassing linear, nonlinear; first 

kind, second kind; regular kernel, weakly singular kernel are strongly in concordance with the 

exact solutions. The solutions of two examples coincide with the exact solutions for the case 

of all the three polynomials which caught our attention in developing the rigorous assumption 

that the approximate solution using polynomial basis by above-followed numerical method 

will always produce identical solution for any VIE involving polynomial type exact solution. 

We came to perceive that as per performance of reaching the numerical solution to the 

closeness of the exact solution, of the three polynomials Legendre polynomial was best, 

Gaugenbaur was better and Chevyshev was good. We believe that these rigorous polynomials 

would produce surprisingly more accurate approximate solutions than currently found ones if 

technological limitation of choosing polynomials of lower degree could be avoided.  
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