
A Study on the Role of Biometric Technology in Relation to

University Teachers with Special Reference to Pune City

@2013 Journal of PU, Part: B

Vol.2 No.2, July 2013, pp 41-45

PRESIDENCY UNIVERSITY

ISSN: 2224-7610

An Efficient Method for Frequency Calculation of an Audio Signal

*
Nazibur Rahman*

ABSTRACT

The audio signal generated by a tuning fork with a unique frequency has been acquired using

a sound card. A Fast Fourier Transform (FFT) of the signal is performed with MATLAB and

the frequency spectrum is plotted. The frequency spectrum revealed the unknown frequency

of the tuning fork. The actual frequency of the tuning fork is compared with the experimental

value. The result verifies that this method of calculating unknown frequency is 99.77%

accurate.

Keywords: Fast Fourier Transform, sound card, A/D converter, MATLAB®, frequency

spectrum, Nyquist frequency.

INTRODUCTION

The frequency of any unknown audio signal can be calculated using Fast Fourier Transform

(FFT) [1] in MATLAB. In this paper, the fundamental (lowest) frequency of a tuning fork has

been calculated and verified with the actual frequency. To perform this task, a microphone

and a sound card is used to collect and convert sound level data to digital form. FFT is

performed on the acquired digital data to find the frequency spectrum. The unknown

frequency of the tuning fork has been determined from the peak frequency spectrum. FFT is

an algorithm to compute the Discrete Fourier Transform (DFT) and its inverse [2]. To

compute the DFT of N points in the naive way, using the definition, takes O(N
2
) arithmetical

operations, while an FFT can compute the same DFT in only O(N log N) operations. The

difference in speed can be enormous, especially for real time long data sets such as sound

wave or speech signal where N may be in the thousands or millions [3]. For 1024 samples a

straight DFT requires 1024
2

= 1048576 arithmetic operations. However for the same number

of samples an FFT requires 1024*log2 (1024) = 10240 arithmetic operations.

Configuring the Data Acquisition Session

For this experiment, 1 second of sound level data is acquired on one sound card channel.

Because the tuning fork vibrates at a nominal frequency between 200 and 3400 Hz , the sound

card is configured to its lowest sampling rate of 8000 Hz according to Shannon‟s sampling

theorem [4]. Even at this lowest rate, we did not experience any aliasing effects because the

tuning fork will not have significant spectral content above 4000 Hz, which is the Nyquist

frequency [5]. Nyquist rate FN = 2Fmax. After the tuning fork has been set to vibrate and

placed it near the microphone, the data acquisition is triggered using a manual trigger. The

whole experiment is completed in six steps.

a) Creating a device object for this experiment

*
 Fellow IEB, Assistant Professor, Department of Electrical and Computer Engineering

Presidency University, Dhaka-1212, Bangladesh.

E-mail: nrahman@presidency.edu.bd

http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Discrete_Fourier_transform
http://en.wikipedia.org/wiki/Big_O_notation
mailto:nrahman@presidency.edu.bd

42 Journal of Presidency University

b) Adding a channel for data input to MATLAB

c) Configuring property values

d) Acquiring the signal data

e) Clearing the memory after the experiment is done

f) Analyzing of the acquired data.

Fig.1: Tuning fork signal input to MATLAB using a sound

a) Creating a device object for this experiment

MATLAB manual states that first a device object has to be created, which is the analog input

object Analog Input(AI) for a sound card [6]. The installed adaptors and hardware IDs are

found with command „daqhwinfo‟. The hardware ID for the sound card was „winsound‟.

AI = analoginput('winsound');

b) Adding a channel for data input to MATLAB

One channel is added to AI object

chan = addchannel(AI,1);

c) Configuring property values

The property values is configured by assigning values to the basic setup properties, and

created the variables blocksize and sampling frequency (Fs), which are used for subsequent

analysis. The actual sampling rate is retrieved because it might be set by the software to a

value that differs from the specified value. The MATLAB program follows.

%Pseudo Code for sample rate

duration = 1; %1 second acquisition

set(AI,'SampleRate',8000)

Actual Rate = get(AI,' Sample Rate');

set(AI,' Samples Per Trigger', duration*Actual Rate)

set(AI,' Trigger Type',' Manual')

blocksize = get(AI,' Samples Per Trigger');

Fs = Actual Rate;

An Efficient Method for Frequency Calculation of an Audio Signal 43

d) Acquiring the signal data

Acquiring data has been started by the command start AI, which issued a manual trigger, and

extracted all data from the sound card. Before trigger is issued, inputting data from the tuning

fork into the sound card has begun.

start(AI)

trigger(AI)

data = getdata(AI);

e) Cleaning up the memory

When the data acquisition is completed, the AI object is removed from memory and from the

MATLAB workspace to increase memory.

delete(AI)

clear AI

f) Analyzing the data

For this experiment, analysis consists of finding the frequency components of the tuning fork

and plotting the results. To do so, the function daqdocfft is created. This function has been

used to calculate the FFT of data, and requires the values of SampleRate and

SamplesPerTrigger as well as data as inputs.

[f,mag] = daqdocfft(data,Fs,blocksize);

Daqdocfft outputs the frequency and magnitude of data, which is then ploted in MATLAB.

function [f,mag] = daqdocfft(data,Fs,blocksize);

% [F,MAG]=DAQDOCFFT(X,FS,BLOCKSIZE) calculates the FFT of audio signal X

% using sampling frequency FS and the SamplesPerTrigger

% provided in BLOCKSIZE

%Pseudo Code for calculating the FFT

xfft = abs(fft(data));

% Avoid taking the log of 0.

index = find(xfft == 0);

xfft(index) = 1e-17;

% Finding the magnitude in dB.

mag = 20*log10(xfft); mag = mag(1:floor(blocksize/2));

f = (0:length(mag)-1)*Fs/blocksize;

f = f(:);

44 Journal of Presidency University

RESULTS AND DISCUSSION

The results are plotted using the following MATLAB program.

plot(f,mag)

grid on

ylabel('Magnitude (dB)')

xlabel('Frequency (Hz)')

title('Frequency Components of Tuning Fork')

Fig.2: Frequency spectrum of the audio signal

The Figure 2 shows the fundamental frequency around 440 Hz and the first overtone around

880 Hz. A simple way to find actual fundamental frequency using MATLAB command is

[ymax,maxindex]= max(mag);

maxindex

maxindex =

 441

The answer is 441 Hz. The plot shows the tuning fork frequency is 440 Hz.

% error =
440

100)440441(x
 = 0.23 %

An Efficient Method for Frequency Calculation of an Audio Signal 45

The result confirms that any unknown audio frequency can be determined by MATLAB with

a microphone and a sound card. The input audio signal can be further analyzed and processed

using Digital filters for suitable application.

CONCLUSION

The analog audio signal of a tuning fork is acquired by a microphone and a sound card using

MATLAB®. This signal is further analyzed in frequency domain by plotting the frequency

spectrum of the time domain audio signal. The frequency spectrum shows the fundamental

frequency of the audio signal as a peak in the plot. This method can be further extended to

determine multiple frequencies in a signal. Fast Fourier Transform is a very efficient method

of calculating the frequency spectrum of a time domain signal.

REFERENCES

[1] http://en.wikipedia.org/wiki/Fast_Fourier_transform accessed on 10 June, 2013.

[2] J. G. Proakis, and D. G. Manolakis, “Efficient Computation of the DFT: Fast Fourier

Transform Algorithms,” in Digital Signal Processing: Principles, Algorithms and

Applications, 3
rd

ed., New Jersey: Prentice-Hall,1995, pp. 511-535.

[3] R. A. Roberts and C. T. Mullis, Digital Signal Processing, Boston: Addison-Wesley,

1987. pp. 212- 230.

[4] R. G. Lyons, Understanding Digital Signal Processing, 2nd ed., New Jersey: Prentice

Hall, 2004, pp. 123-150.

[5] C. Schuler and M. Chugani, Digital Signal Processing: A Hands-on Approach, 1
st
 ed.,

Noida, India, Tata McGraw-Hill, 2005, pp. 11-41.

[6] MATLAB 7.5 user manual, The MathWorks Inc., Natick, MA, 2007.

